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Abstract

A theoretical study has been undertaken to determine the rate of heat transfer in a thin evaporating liquid film flow-

ing along the walls of a microchannel under the combined action of surface tension and gravity. Analytical solutions of

conservation equations, in both liquid and vapour phases, have been obtained, in considerations with coupled heat and

mass transfer boundary conditions at the interface. It has been recognized that while the local Nusselt number is influ-

enced solely by the liquid film thickness, the average Nusselt number depends both on liquid film thickness and a dimen-

sionless number qgsinh d20=r, as obtained from the scale of characteristic velocity for both gravity and surface tension.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Importance of heat transfer studies of an evaporating

thin liquid film originates from the advancement in cool-

ing of microscale electronic devices, and design of micro-

heat pipes. The rate of heat flux in a thin evaporating

liquid film in a microdevice depends mainly on the film

thickness determined by the imposed condition of flow

and the evaporation characteristics at the interface. Sev-

eral works [1–13] pertaining to numerical and experi-

mental investigations on evaporating thin film are

available in the literature. Park and Lee in their recent

work [13] has made a brief review of all the pertinent

earlier works, which is not repeated here for the purpose

of brevity. Most of the earlier models could not properly
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link the evaporative velocity with mass diffusion in gas

phase. The work of Park and Lee [13] considered the ef-

fect of disjoining pressure through a dispersion constant,

but did not mention about the state of gas phase con-

trolling the interfacial evaporation process. It appears

from their work that the gas phase was taken to be a sat-

urated vapor in thermodynamic equilibrium with the

liquid film. Under the situation, the phase change phe-

nomenon takes place through the mechanism of boiling

to maintain saturated temperature at the interface with a

wall superheat, the physics of which is entirely different

from that of an evaporation transport.

The present work deals with a thin liquid film main-

tained throughout at a temperature below the saturation

temperature corresponding to its existing pressure, and

evaporates from its free surface in a medium of air

and water vapor. The rate of evaporation under the sit-

uation has been linked with the vapor phase mass diffu-

sion at the interface. The mathematical model is based

on the conservation equations for heat, mass and

momentum transport in both liquid and vapor phases,
ed.
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linked through the interfacial equilibrium conditions.

Analytical solutions of such a situation are rarely found

in literature, and the present paper has made an attempt

towards that direction. The average and local Nusselt

number along with the dry out length (i.e., the length

of liquid film region from inlet to the location where it

vanishes) have been predicted in terms of the pertinent

controlling parameters.
2. Mathematical modeling

For the purpose of mathematical modeling, we con-

sider the evaporation phase change phenomenon of a

thin liquid film in vicinity of the wall of a microcapillary

channel, as depicted in Fig. 1. For geometric similarity,

only the lower half is considered for mathematical anal-

ysis. Above the liquid film, quiescent air flows at a tem-

perature of Ta, and a moisture concentration of Ca,

which has been set to zero for the present study. The

channel wall is kept at a constant temperature Tw, which

is greater than Ta. The gravity is assumed to act at an

angle h with respect to the negative y-direction. For

the sake of analytical treatment, following simplifying

assumptions are made:

(1) The transport phenomena are approximately two-

dimensional.

(2) Axial (x-direction) diffusion terms in various con-

servation equations are insignificant in compari-

son to the transverse (y-direction) diffusion

terms, since the characteristic length scale along

x-direction is significantly larger in comparison

to that along y-direction.

(3) The film thickness (d) is significantly smaller in

comparison to the channel half-width (h).
Fig. 1. A schematic diagram of the physical situation.
(4) The axial pressure gradient is a function of x-

coordinate only.

(5) Axial gradients of temperature and concentration

are relatively inconsequential in comparison to the

respective transverse gradients.

(6) Spatial variation of thermophysical properties

within the same phase can be neglected, although

they are assumed to be different for different

phases.

(7) Temperature variation along the y-direction

within the liquid phase is assumed to be linear,

in consideration of insignificant influence of con-

vection due to small flow velocity in the liquid

film.

With the above assumptions, the governing transport

equations for the different phases can be written as

follows:

(i) Momentum conservation in the liquid phase

ll

o2u
oy2

¼ op
ox

� qlg sin h ¼ �F ðxÞ; say ð1Þ

where u is the velocity, p is the pressure, l is the

viscosity, and F(x) is a function of x. In Eq. (1),

the subscript �l� stands for the liquid phase. The

above equation is subjected to following bound-

ary conditions:

ðaÞ At y ¼ 0; u ¼ 0 ð2aÞ

ðbÞ At y ¼ d;
ou
oy

¼ 0 ð2bÞ

Eq. (1), subjected to the above boundary condi-

tions, yields

u ¼ l
2l

F ðxÞ½2dy � y2� ð3Þ

(ii) Energy conservation in the vapor phase

V s

oT
oy

¼ av
o2T
oy2

ð4Þ

where Vs is the Stefan flow velocity due to evapo-

ration at the interface, and a is the thermal diffu-

sivity. The subscript �v� indicates a property of the

vapor phase. Under the following conditions:

ðaÞ At y ¼ d; T ¼ T s ð5aÞ

ðbÞ At y ¼ h; T ¼ T a ð5bÞ

Eq. (4) gives a solution:

T � T s

T s � T a
¼

exp V sy
av

� �
� exp V sd

av

� �

exp V sd
av

� �
� exp V sh

av

� � ð5Þ
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(iii) Species conservation in the vapor phase

V s

oC
oy

¼ Dv

o2C
oy2

ð6Þ

where C is the concentration of water in the vapor

phase, and Dv is the mass diffusivity of vapor in

air. Eq. (6) can also be solved analogous to solu-

tion of Eq. (4) to yield:

C � Cs

Cs � Ca
¼

exp V sy
Dv

� �
� exp V sd

Dv

� �

exp V sd
Dv

� �
� exp V sh

Dv

� � ð7Þ

The above-mentioned equations must be applied in

consistency with the appropriate interfacial matching

conditions, which are as follows:

(i) The rate of mass transfer at any section x (i.e., _mx)

is related to the rate of evaporation per unit length

(i.e., _me) as

d _mx

dx
¼ � _me ð8Þ

Using Eq. (3), the above can be simplified to

obtain:

d3F 0ðxÞ þ 3F ðxÞ dd
dx

¼ �3l _me ð9Þ

where

_me ¼ qvV s ð9aÞ

(ii) The consideration of interface being impermeable

to non-evaporating species gives:

�Dv
oC
oy

���
y¼d

1� Cs

¼ V s ð10Þ

Using Eqs. (7) and (10) may be simplified to

obtain:

V s ¼
Dv

h� d
ln

1� Ca

1� Cs

� �
ð11Þ

(iii) The interfacial heat balance (Stefan boundary

condition) can be written as

�kv
oT v

oy

����
y¼d

þ kl
oT l

oy

����
y¼d

¼ �qvhfgV s ð12Þ

where k is the thermal conductivity, q is the den-

sity, and hfg is the latent heat of evaporation at

the prevailing local conditions. The temperature

profile depicted by Eq. (5) can now be substituted

in Eq. (12) to obtain a local variation of the inter-

facial temperature (Ts) as

T s ¼
�qvhfgV s þ kl Tw

d � T af
kl
d � f

ð13Þ
where the function �f� is given by

f ¼ kv
V s

av

exp V sd
av

� �

exp V sd
av

� �
� exp V sh

av

� � ð13aÞ

The coupled system of Eqs. (9), (11) and (13) can

lead to a well-posed problem, subject to the condi-

tion that the function F(x) appearing in Eq. (9) is

appropriately defined. For this purpose, dynamic

conditions prevailing at the interface need to be

invoked, described as follows.

(iv) The pressure difference across the interface can be

expressed as

p � pa ¼ � r
RðxÞ þ

a
r3

ð14Þ

where pa is the pressure in the vapor phase adja-

cent to the interface, r is the surface tension coef-

ficient, R(x) is the local interfacial radius of

curvature, and a is the dispersion constant [4].

Now, from Eq. (1), we can describe the function

F(x), with the help of Eq. (14) as

F ðxÞ ¼ � r

R2

dR
dx

þ 3a

d4
dd
dx

þ qlg sin h ð15Þ

where R(x) is described as

RðxÞ ¼
1þ dd

dx

� �2h i1:5
d2d
dx2

ð15aÞ

In our subsequent analysis, we approximate R(x) by

assuming that magnitude of dd
dx

� �2
is much smaller in

comparison to unity.

It needs to be noted at this point that the interfacial

variables Ts, Cs, as well as the term hfg, as appearing in

Eqs. (11) and (13) are by no means independent local

constants, but are interrelated to each other by pertinent

thermodynamic constraints. In the present study, the

above thermodynamic constraints are assumed to obey

the following relationships [14]:

Cs ¼
l

1þ Mair

M l
ðP total

pv
� 1Þ

ð16aÞ

where M stands for the molecular weight, and the

ratio ptotal/pv can be obtained from the following

relationship:

pv
ptotal

¼ exp
DH sa

R
T s � T sa

T sT sa

� 	


� 0:38

T c

ln
T s

T sa

� 0:118

T 2
c

ðT s � T saÞ
�
: ð16bÞ

In Eq. (16b), the subscript �sa� refers to standard atmo-

spheric conditions, and the subscript �c� refers to the

�critical state�, with all temperatures expressed in K. Fur-

ther, the variation of hfg can be expressed as [14]:
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hfg ¼ DH sa

T c � T s

T c � T sa


 �0:38
ð16cÞ

Incorporating the above variations into Eqs. (11) and

(13), and substituting those in Eq. (9), a fourth order

highly non-linear ordinary differential equation can be

obtained, which is solved numerically using the fourth

order Runge–Kutta method, by converting the same

into a system of four coupled first order equations.

The boundary conditions are as follows: at x = 0,

d = d0, and as x !1 d! 0, dd/dx ! 0, d2d/dx2 ! 0.

Finally, we determine the local and average Nusselt

number as follows:

Nux ¼
hxx
kl

ð17Þ

With hx = kl/d, for a linear temperature profile within

the liquid, it becomes

Nux ¼
x
d

ð17aÞ

Analogously, the average Nusselt number is given by

Nuxd ¼
1

xd

Z xd

0

Nux dx ¼
1

xd

Z xd

0

x
d
dx ð17bÞ

where xd is the dry out length (i.e., the length of liquid

film region from inlet to the location where it vanishes).
3. Results and discussions

The Fig. 2 shows the variation of local Nusselt num-

ber along the length of the channel for different values of

d0/h. The increase in Nux with x is attributed to the de-

crease in liquid film thickness due to evaporation. It is

interesting to note that after a certain distance x, Nux
blends asymptotically to a very high value. This corre-
Fig. 2. Axial variation of local Nusselt number.
sponds to an approximate location of almost dry out re-

gion where the liquid film thickness becomes exceedingly

small. Since conduction is the dominant mode of heat

transfer in the liquid film, the local heat transfer coeffi-

cient, for a prescribed temperature difference, is inver-

sely proportional to the film thickness. It is further

observed that the distribution of Nux for all values of

d0/h less than or equal to 0.01 fall on a single curve.

The variable x (the axial location) is scaled by d0 (the ini-
tial film thickness) in Fig. 2. Therefore, it is observed

from Fig. 2 that the variation of local Nusselt number

Nux with d0, for a given channel height, takes place in

a sense that with a change in d0, the same value of

Nux is attained at a value of x that is directly propor-

tional to d0.
The rate of heat transfer under the present situation

is influenced mainly by the liquid film thickness, which,

in turn, is governed by flow velocity and evaporation at

the surface. The flow velocity depends on both capillary

and gravity forces. A relative magnitude of these two ef-

fects can be assessed by a non-dimensional number

qg sin hd20=r obtained from the scale of characteristic

velocity for both gravity and surface tension. The

Fig. 3 shows that there is a slight decrease in average

Nusselt number with the dimensionless parameter

qg sin hd20=r. An increase in the parameter qg sin hd20=r
implies either an increase in d0 or a decrease in r, both
of which result in an increased film thickness at any gi-

ven axial location. While the local heat flux depends

only on the local film thickness, the total heat transfer

from the surface depends on the wetted length (or, dry

out length) also, determined by the rate of decay of film

thickness along the wall. It is observed from Figs. 4 and

5 that the location of dry out region is almost propor-

tional to the initial film thickness d0, but is practically

uninfluenced by the surface tension coefficient r.
Fig. 3. Variation of average Nusselt number with the dimen-

sionless ratio qg sin hd20=r.



Fig. 4. Location of dry out point as a function of the

dimensionless ratio qg sin hd20=r.

Fig. 5. Location of dry out point as a function of the initial film

thickness.
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4. Conclusions

Analytical solutions of conservation equations have

been made to determine the rate of heat transfer in a

thin evaporating liquid film flowing along the walls of

a microchannel under the combined action of surface

tension and gravity.

While the local Nusselt number is influenced solely

by the local thickness of liquid film, the average Nusselt

number depends both on liquid film thickness and the

dry out length. The local Nusselt number increases grad-

ually along the channel wall but blends asymptotically

to a very high value near the dry out region.
The dimensionless number qg sin hd20=r, as obtained

from the scale of characteristic velocity for both gravity

and surface tension, is found to have a mild inverse rela-

tionship with the average Nusselt number. The location

of almost dry out region in a channel of a given height is

proportional to the initial liquid film thickness.
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